国务院. (2017-07-20). 新一代人工智能发展规划(国发〔2017〕35号). 中华人民共和国中央人民政府网站. http://www.gov.cn/zhengce/content/2017-07/20/content5211996.htm
askell, a., bai, y., chen, a., darin, d., ganguli, d., henighan, t., jones, a., joseph, n., mann, b., dassarma, n., elhage, n., hatfield-dodds, z., hernandez, d., kernion, j., ndousse, k., olsson, c., amodei, d., brown, t., clark, j., ... olah, c.(2021). a general language assistant as a laboratory for alignment. arxiv preprint arxiv, 2112.00861.
bommasani, r., hudon, d. a., adeli, e., altman, r., arora, s., arx, s., bernstein, m., bohg, j., bosselut, a., brunskill, e., brynjolfsson, e., buch, s., card, d., castellon, r., chatterji, n., chen, a., creel, k., davis, j., demszky, d., ... liang, p.(2021). on the opportunities and risks of foundation models. arxiv preprint arxiv, 2021:2108.07258.
brown, t., mann, b., ryder, n., subbiah, m., kaplan, j., dhariwal, p., neelakantan, a., shyam, p., sastry, g., askell, a., agarwal, s., herbert-voss, a., krueger, g., henighan, t., child, r., ramesh, a., ziegler, d., wu, j., winter, c., ... amodei, d.(2020). language models are few-shot learners. advances in neural information processing systems, 33, 1877-1901.
christiano, p. f., leike, j., brown, t., martic, m., legg, s., & amodei, d.(2017). deep reinforcement learning from human preferences. advances in neural information processing systems, 30.
devlin, j., chang, w., lee, k., & toutanova, k.(2019). bert: pre-training of deep bidirectional transformers for language understanding. proceedings of the 2019 conference of the north american chapter of the association for computational linguistics: human language technologies, 4171-4186.
ho, j., jain, a., & abbeel, p. (2020). denoising diffusion probabilistic models. advances in neural information processing systems, 33, 6840-6851.
kosinski, m. (2023). theory of mind may have spontaneously emerged in large language models. arxiv preprint arxiv, 2302.02083.
openai. (2022-04-06). dall·e 2. openai. https://openai.com/dall-e-2/
openai. (2022-11-30). chatgpt: optimizing language models for dialogue.openai. https://openai.com/blog/chatgpt/
ouyang, l., wu, j., jiang, x., almeida, d., wainwright, c., mishkin, p., zhang, c., agarwal, s., slama, k., ray, a., schulman, j., hilton, j., kelton, f., miller, l., simens, m., askell, a., welinder, p., christiano, p., ... lowe, r.(2022). training language models to follow instructions with human feedback. arxiv preprint arxiv, 2203.02155.
roy, s., & dan, r. (2015). solving general arithmetic word problems. proceedings of the conference on empirical methods in natural language processing, 15, 1743-1752.
radford, a., narasimhan, k., salimans, t., & sutskever, i.(2018). improving language understanding by generative pre-training.
radford, a., wu, j., child, r., luan, d., amodei, d., & sutskever, i.(2019). language models are unsupervised multitask learners. openai blog, 1(8), 9.
raffel, c., shazeer, n., roberts, a., lee, k., narang, s., matena, m., zhou, y., li, wei., & liu, p. (2019). exploring the limits of transfer learning with a unified text-to-text transformer. journal of machine learning research, 21, 1-67.
schulman, j., wolski, f., dhariwal, p., radford, a., & klimov, o.(2017). proximal policy optimization algorithms. arxiv preprint arxiv, 1707.06347.
vaswani, a., shazeer, n., parmar, n., uszkoreit, j., jones, l., gomez, a., kaiser, l., & polosukhin, i. (2017). attention is all you need. advances in neural information processing systems, 30.
wei, j., bosma, m., zhao, y., guu, k., yu, w., lester, b., du, n., dai, a. m., & le, v. (2021). finetuned language models are zero-shot learners. international conference on learning representations, 10.
wei, j., wang, x., schuurmans, d., bosma, m., chi, e., le, q., & zhou, d. (2022). chain-of-thought prompting elicits reasoning in large language models. advances in neural information processing systems, 36.
zhang, z., han, x., liu, z., jiang, x., sun, m., & liu, q. (2019). ernie: enhanced language representation with informative entities. proceedings of the 57th annual meeting of the association for computational linguistics, 1441-1451.