教育大数据已成为教育评价的核心资源,大数据支撑下的教育评价不仅意味着拥有海量数据,更体现为多源数据采集、数据深度挖掘、数据实时呈现以及高效数据管理在教育评价中的应用。
1.1 多源数据,实现全过程、全方位的立体评价
多源是大数据的一个重要特征,表现出对教育评价全过程与全时空数据信息的持续采集与追踪,内含对评价对象全景式呈现的意蕴。传统教育评价受到技术条件限制难以获取全面评价信息,从而易使一些关键维度的评价内容缺乏强有力的信息依据,评价的有效性与专业性难以保证,多源数据则“帮助我们以前所未有的视角判断什么可行、什么不可行;展示那些以前不可能观察到的学习层面”[3]9,推动着教育评价从基于小样本数据的经验判断向基于整体性大数据的证据决策转变。
多源数据的重要价值在于促成教育评价活动实现时间维度上的连续性与空间维度上的全域性。在时间维度上,多源数据体现为相关主体能凭借数据采集平台与设备获取展现评价对象变化发展的过程性数据,如通过物联感知技术、可穿戴设备技术、传感器、视频录制技术、识别技术等数据获得各种状态、各个环节的海量历史数据与实时生成数据,一些行为数据可以实现伴随式采集,促成过去与现在多时空数据联结,展现评价对象的变化与发展过程[4]。在空间维度上,多源数据一方面表现为数据采集渠道更加多样,能够突破场所的限制,线上数据与线下数据也可以并存,形成多维评价空间;另一方面则是数据种类更加全面,能够展现评价对象在学业成绩、情感态度、身心健康等各个方面的表现,充分反映评价对象的真实状态。同时,多源数据也意味着评价数据结构的完善与数据层次的明晰,如美国所建立起包括国家级、州级、学区级以及校级的各级各类教育数据系统,“这些数据系统之间相互关联,数据互通,形成立体化数据网络,为美国教育评价用大数据的获取提供了基本的依托。”[5]多源数据能够打破时间与空间的阻隔,是推动教育评价由模糊走向精确的重要因素,为构建全过程、全方位的立体化评价网络奠定基础。
1.2 深度挖掘,实现科学化、精确化的即时评价
教育数据是教育评价的事实与证据基础,但仅仅对教育数据进行简单采集、现状描述与浅层分析并不能充分实现其内在的价值与意义。长期以来,我国教育评价中存在数据来源与类型单一、数据的关联性缺失、数据使用缺乏深度等问题,未能真正发挥评价数据的应有功能,而大数据所具有的大容量、高速度、多样性等特征使得对数据进行深度挖掘成为可能。大数据在经过深度挖掘后所形成的结果能够呈现多种模态数据之间的关联情况,深入分析评价对象成长与发展的规律,实现对评价成效的追踪与问题预警。
大数据时代的数据挖掘以数据信息技术手段作为支撑,可以对海量数据进行对比分析、交叉检验以及聚类统计等,使得多样态数据经过整合与分析后形成更具针对性与实效性的评价数据,实现数据质量的提升,从而不断增强评价分析结果的精准度[6]。此外,对于大量、丰富的评价数据,深度挖掘能够从数据的相关关系中寻找其价值,而这一点是单一微量数据很难实现的。例如,研究者可以通过pisa测试中所形成的庞大数据库进行数据挖掘与二次分析研究,从教育学、心理学、社会学、经济学等多个学科视角进行分析,使评价数据的应用价值得到充分实现。运用多样化技术对海量评价数据进行挖掘,可以为教育决策提供更加专业科学的依据。对于教师的教学而言,对数据的深度挖掘则能利用相关关系的“发声”捕捉学生的最新动态,构建个性化学生数字画像[7],为学生的学习提供及时反馈,实现即时评价。
1.3 算法推荐,实现可视化、差异化的动态评价
算法是大数据时代的重要概念,数据的积累促成了算法研究的深入,大数据与智能化传播的本质,就是基于计算机的算法程序对各类数据信息进行搜集、整理、评估、分类以及应用[8]。智能算法的基本要义即根据用户的历史数据,运用数学算法分析用户个人偏好并进行推荐。在教育领域中,仅凭单一的分析工具难以快速挖掘数据的多维功能,而智能算法的应用则有助于推动教学管理评价等走向精准化与个性化。
用算法生产教育知识首先需要做的就是搜集足够的数据,然后通过适当的算法发现相应的知识[8],算法推荐应用于教育评价中能够更加精确地推送评价对象所需的数据信息,压缩评价数据反馈所具有的偶然性。基于大数据技术,研究者能够充分利用算法模型,凭借可视化工具等载体从海量的数据库中精准获取并反馈评价信息;可视化技术有助于分析和探索大规模复杂评价数据,对公众理解和发现教育规律起到极大作用,是教育价值最直接的呈现形式[7]。智能算法借助相关工具将关涉个体成长发展的评价数据以可视化图表等更直观的形式进行输出,评价对象可以从中获取个性化的分析数据与精准化的反馈结果,从而了解自身的优势与不足。此外,对学生个体差异与个性化的忽视导致教育评价陷入同质性的困境,难以为改善评价对象的发展状况提供实质帮助。在大数据时代,算法推荐能呈现适用于特定群体和对象的评价内容,回应教育评价中所存在的客观差异。智能算法对评价数据复杂性与差异性的关注促成了评价活动的动态性是算法推荐的重要价值体现。
1.4 数据管理,实现预测性、前瞻性的发展评价
高质量的教育评价离不开大数据技术的支撑,然而,目前教育评价数据的运行中仍存在一些问题,如不同机构之间的数据获取难度大、数据缺失、数据壁垒等现象。随着大数据管理技术不断提升,数据管理功能依托特定的技术或平台对所采集的海量数据进行分类、归纳、分析等处理,使复杂多样的评价数据处于有序的状态。
数据库是对海量数据进行整合分析的有效手段,教育评价活动在信息技术支撑下可以形成评价数据库,从而有效实现对海量评价数据的管理。目前的大规模教育评价项目均依托互联网实现大范围合作式评价开发、施测、过程与数据管理[9],形成包含学生学业质量与多主体背景的调查数据库,满足学生、家长、教师、教育管理部门以及教育研究者等相关主体对评价数据应用的需求。建立大规模的追踪数据库是实现预测性、前瞻性的发展评价的必要支撑,也是实施的前提条件,利用数据库能够对评价数据进行统一管理与持续追踪,系统地掌握评价对象在一定时间段内的发展与成就变化。同时,数据管理有利于对数据进行横向与纵向分析,对于了解学生学业成绩的发展情况,建构学生学习过程常量,科学、全面地评价学生的学习过程,也能够提供重要的数据支撑[4],真正实现发展性学生评价。维克托·迈尔-舍恩伯格(viktor mayer-schnberger)等曾提出了大数据改善学习的3大核心要素:反馈、个性化和概率预测[3]104,对大数据进行管理不仅仅是关注过去或现在,更重要的是能够对个体行为偏好以及成就表现等数据进行预测,帮助评价对象及早了解自我发展态势。不论是学校评价、教师评价抑或是学生评价,其中内含促进人的发展的最终要义,在大数据管理体系的不断完善之下,对评价对象发展路向进行规划的可能性随之提升,推动着教育评价向更具前瞻性的发展评价转变。